extension | φ:Q→Aut N | d | ρ | Label | ID |
C4.1(C23×C4) = C22×D4⋊C4 | φ: C23×C4/C22×C4 → C2 ⊆ Aut C4 | 64 | | C4.1(C2^3xC4) | 128,1622 |
C4.2(C23×C4) = C22×Q8⋊C4 | φ: C23×C4/C22×C4 → C2 ⊆ Aut C4 | 128 | | C4.2(C2^3xC4) | 128,1623 |
C4.3(C23×C4) = C2×C23.24D4 | φ: C23×C4/C22×C4 → C2 ⊆ Aut C4 | 64 | | C4.3(C2^3xC4) | 128,1624 |
C4.4(C23×C4) = C2×C23.37D4 | φ: C23×C4/C22×C4 → C2 ⊆ Aut C4 | 32 | | C4.4(C2^3xC4) | 128,1625 |
C4.5(C23×C4) = C2×C23.38D4 | φ: C23×C4/C22×C4 → C2 ⊆ Aut C4 | 64 | | C4.5(C2^3xC4) | 128,1626 |
C4.6(C23×C4) = C2×C23.36D4 | φ: C23×C4/C22×C4 → C2 ⊆ Aut C4 | 64 | | C4.6(C2^3xC4) | 128,1627 |
C4.7(C23×C4) = C24.98D4 | φ: C23×C4/C22×C4 → C2 ⊆ Aut C4 | 32 | | C4.7(C2^3xC4) | 128,1628 |
C4.8(C23×C4) = 2+ 1+4⋊5C4 | φ: C23×C4/C22×C4 → C2 ⊆ Aut C4 | 32 | | C4.8(C2^3xC4) | 128,1629 |
C4.9(C23×C4) = 2- 1+4⋊4C4 | φ: C23×C4/C22×C4 → C2 ⊆ Aut C4 | 64 | | C4.9(C2^3xC4) | 128,1630 |
C4.10(C23×C4) = C22×C4≀C2 | φ: C23×C4/C22×C4 → C2 ⊆ Aut C4 | 32 | | C4.10(C2^3xC4) | 128,1631 |
C4.11(C23×C4) = C2×C42⋊C22 | φ: C23×C4/C22×C4 → C2 ⊆ Aut C4 | 32 | | C4.11(C2^3xC4) | 128,1632 |
C4.12(C23×C4) = 2- 1+4⋊5C4 | φ: C23×C4/C22×C4 → C2 ⊆ Aut C4 | 16 | 4 | C4.12(C2^3xC4) | 128,1633 |
C4.13(C23×C4) = C2×C4×D8 | φ: C23×C4/C22×C4 → C2 ⊆ Aut C4 | 64 | | C4.13(C2^3xC4) | 128,1668 |
C4.14(C23×C4) = C2×C4×SD16 | φ: C23×C4/C22×C4 → C2 ⊆ Aut C4 | 64 | | C4.14(C2^3xC4) | 128,1669 |
C4.15(C23×C4) = C2×C4×Q16 | φ: C23×C4/C22×C4 → C2 ⊆ Aut C4 | 128 | | C4.15(C2^3xC4) | 128,1670 |
C4.16(C23×C4) = C4×C4○D8 | φ: C23×C4/C22×C4 → C2 ⊆ Aut C4 | 64 | | C4.16(C2^3xC4) | 128,1671 |
C4.17(C23×C4) = C2×SD16⋊C4 | φ: C23×C4/C22×C4 → C2 ⊆ Aut C4 | 64 | | C4.17(C2^3xC4) | 128,1672 |
C4.18(C23×C4) = C2×Q16⋊C4 | φ: C23×C4/C22×C4 → C2 ⊆ Aut C4 | 128 | | C4.18(C2^3xC4) | 128,1673 |
C4.19(C23×C4) = C2×D8⋊C4 | φ: C23×C4/C22×C4 → C2 ⊆ Aut C4 | 64 | | C4.19(C2^3xC4) | 128,1674 |
C4.20(C23×C4) = C42.383D4 | φ: C23×C4/C22×C4 → C2 ⊆ Aut C4 | 64 | | C4.20(C2^3xC4) | 128,1675 |
C4.21(C23×C4) = C4×C8⋊C22 | φ: C23×C4/C22×C4 → C2 ⊆ Aut C4 | 32 | | C4.21(C2^3xC4) | 128,1676 |
C4.22(C23×C4) = C4×C8.C22 | φ: C23×C4/C22×C4 → C2 ⊆ Aut C4 | 64 | | C4.22(C2^3xC4) | 128,1677 |
C4.23(C23×C4) = C42.275C23 | φ: C23×C4/C22×C4 → C2 ⊆ Aut C4 | 32 | | C4.23(C2^3xC4) | 128,1678 |
C4.24(C23×C4) = C42.276C23 | φ: C23×C4/C22×C4 → C2 ⊆ Aut C4 | 64 | | C4.24(C2^3xC4) | 128,1679 |
C4.25(C23×C4) = C42.277C23 | φ: C23×C4/C22×C4 → C2 ⊆ Aut C4 | 32 | | C4.25(C2^3xC4) | 128,1680 |
C4.26(C23×C4) = C42.278C23 | φ: C23×C4/C22×C4 → C2 ⊆ Aut C4 | 32 | | C4.26(C2^3xC4) | 128,1681 |
C4.27(C23×C4) = C42.279C23 | φ: C23×C4/C22×C4 → C2 ⊆ Aut C4 | 64 | | C4.27(C2^3xC4) | 128,1682 |
C4.28(C23×C4) = C42.280C23 | φ: C23×C4/C22×C4 → C2 ⊆ Aut C4 | 64 | | C4.28(C2^3xC4) | 128,1683 |
C4.29(C23×C4) = C42.281C23 | φ: C23×C4/C22×C4 → C2 ⊆ Aut C4 | 64 | | C4.29(C2^3xC4) | 128,1684 |
C4.30(C23×C4) = C2×C8○D8 | φ: C23×C4/C22×C4 → C2 ⊆ Aut C4 | 32 | | C4.30(C2^3xC4) | 128,1685 |
C4.31(C23×C4) = C2×C8.26D4 | φ: C23×C4/C22×C4 → C2 ⊆ Aut C4 | 32 | | C4.31(C2^3xC4) | 128,1686 |
C4.32(C23×C4) = C42.283C23 | φ: C23×C4/C22×C4 → C2 ⊆ Aut C4 | 32 | 4 | C4.32(C2^3xC4) | 128,1687 |
C4.33(C23×C4) = M4(2).51D4 | φ: C23×C4/C22×C4 → C2 ⊆ Aut C4 | 16 | 4 | C4.33(C2^3xC4) | 128,1688 |
C4.34(C23×C4) = M4(2)○D8 | φ: C23×C4/C22×C4 → C2 ⊆ Aut C4 | 32 | 4 | C4.34(C2^3xC4) | 128,1689 |
C4.35(C23×C4) = Q8×C22×C4 | φ: C23×C4/C22×C4 → C2 ⊆ Aut C4 | 128 | | C4.35(C2^3xC4) | 128,2155 |
C4.36(C23×C4) = C2×C4×C4○D4 | φ: C23×C4/C22×C4 → C2 ⊆ Aut C4 | 64 | | C4.36(C2^3xC4) | 128,2156 |
C4.37(C23×C4) = C2×C22.11C24 | φ: C23×C4/C22×C4 → C2 ⊆ Aut C4 | 32 | | C4.37(C2^3xC4) | 128,2157 |
C4.38(C23×C4) = C2×C23.32C23 | φ: C23×C4/C22×C4 → C2 ⊆ Aut C4 | 64 | | C4.38(C2^3xC4) | 128,2158 |
C4.39(C23×C4) = C2×C23.33C23 | φ: C23×C4/C22×C4 → C2 ⊆ Aut C4 | 64 | | C4.39(C2^3xC4) | 128,2159 |
C4.40(C23×C4) = C22.14C25 | φ: C23×C4/C22×C4 → C2 ⊆ Aut C4 | 32 | | C4.40(C2^3xC4) | 128,2160 |
C4.41(C23×C4) = C4×2+ 1+4 | φ: C23×C4/C22×C4 → C2 ⊆ Aut C4 | 32 | | C4.41(C2^3xC4) | 128,2161 |
C4.42(C23×C4) = C4×2- 1+4 | φ: C23×C4/C22×C4 → C2 ⊆ Aut C4 | 64 | | C4.42(C2^3xC4) | 128,2162 |
C4.43(C23×C4) = C2×Q8○M4(2) | φ: C23×C4/C22×C4 → C2 ⊆ Aut C4 | 32 | | C4.43(C2^3xC4) | 128,2304 |
C4.44(C23×C4) = C4.22C25 | φ: C23×C4/C22×C4 → C2 ⊆ Aut C4 | 32 | 4 | C4.44(C2^3xC4) | 128,2305 |
C4.45(C23×C4) = C22×C4.Q8 | φ: C23×C4/C24 → C2 ⊆ Aut C4 | 128 | | C4.45(C2^3xC4) | 128,1639 |
C4.46(C23×C4) = C22×C2.D8 | φ: C23×C4/C24 → C2 ⊆ Aut C4 | 128 | | C4.46(C2^3xC4) | 128,1640 |
C4.47(C23×C4) = C2×C23.25D4 | φ: C23×C4/C24 → C2 ⊆ Aut C4 | 64 | | C4.47(C2^3xC4) | 128,1641 |
C4.48(C23×C4) = C2×M4(2)⋊C4 | φ: C23×C4/C24 → C2 ⊆ Aut C4 | 64 | | C4.48(C2^3xC4) | 128,1642 |
C4.49(C23×C4) = C24.100D4 | φ: C23×C4/C24 → C2 ⊆ Aut C4 | 32 | | C4.49(C2^3xC4) | 128,1643 |
C4.50(C23×C4) = C4○D4.7Q8 | φ: C23×C4/C24 → C2 ⊆ Aut C4 | 64 | | C4.50(C2^3xC4) | 128,1644 |
C4.51(C23×C4) = C4○D4.8Q8 | φ: C23×C4/C24 → C2 ⊆ Aut C4 | 64 | | C4.51(C2^3xC4) | 128,1645 |
C4.52(C23×C4) = C22×C8.C4 | φ: C23×C4/C24 → C2 ⊆ Aut C4 | 64 | | C4.52(C2^3xC4) | 128,1646 |
C4.53(C23×C4) = C2×M4(2).C4 | φ: C23×C4/C24 → C2 ⊆ Aut C4 | 32 | | C4.53(C2^3xC4) | 128,1647 |
C4.54(C23×C4) = M4(2).29C23 | φ: C23×C4/C24 → C2 ⊆ Aut C4 | 32 | 4 | C4.54(C2^3xC4) | 128,1648 |
C4.55(C23×C4) = C23×M4(2) | φ: C23×C4/C24 → C2 ⊆ Aut C4 | 64 | | C4.55(C2^3xC4) | 128,2302 |
C4.56(C23×C4) = C22×C8⋊C4 | central extension (φ=1) | 128 | | C4.56(C2^3xC4) | 128,1602 |
C4.57(C23×C4) = C2×C4×M4(2) | central extension (φ=1) | 64 | | C4.57(C2^3xC4) | 128,1603 |
C4.58(C23×C4) = C2×C8○2M4(2) | central extension (φ=1) | 64 | | C4.58(C2^3xC4) | 128,1604 |
C4.59(C23×C4) = M4(2)○2M4(2) | central extension (φ=1) | 32 | | C4.59(C2^3xC4) | 128,1605 |
C4.60(C23×C4) = C4×C8○D4 | central extension (φ=1) | 64 | | C4.60(C2^3xC4) | 128,1606 |
C4.61(C23×C4) = D4.5C42 | central extension (φ=1) | 64 | | C4.61(C2^3xC4) | 128,1607 |
C4.62(C23×C4) = C22×M5(2) | central extension (φ=1) | 64 | | C4.62(C2^3xC4) | 128,2137 |
C4.63(C23×C4) = C2×D4○C16 | central extension (φ=1) | 64 | | C4.63(C2^3xC4) | 128,2138 |
C4.64(C23×C4) = Q8○M5(2) | central extension (φ=1) | 32 | 4 | C4.64(C2^3xC4) | 128,2139 |
C4.65(C23×C4) = C22×C42⋊C2 | central extension (φ=1) | 64 | | C4.65(C2^3xC4) | 128,2153 |
C4.66(C23×C4) = C22×C8○D4 | central extension (φ=1) | 64 | | C4.66(C2^3xC4) | 128,2303 |